Part Number Hot Search : 
GRM188R 80000 N5266 01012 2SC454 0TQCN 74FR573 6250GV3
Product Description
Full Text Search
 

To Download IXSP20N60B2D1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ds99181b(12/05) features ? international standard packages ? guaranteed short circuit soa capability ? low v ce(sat) - for low on-state conduction losses ? high current handling capability ? mos gate turn-on - drive simplicity ? fast fall time for switching speeds up to 20 khz applications ? ac motor speed control ? uninterruptible power supplies (ups) ? welding advantages ? high power density ixsa 20n60b2d1 ixsp 20n60b2d1 high speed igbt short circuit soa capability symbol test conditions maximum ratings v ces t j = 25 c to 150 c 600 v v cgr t j = 25 c to 150 c; r ge = 1 m 600 v v ges continuous 20 v v gem transient 30 v i c25 t c = 25 c35a i c110 t c = 110 c20a i f(110) 11 a i cm t c = 25 c, 1 ms 60 a ssoa v ge = 15 v, t j = 125 c, r g = 82 i cm = 32 a (rbsoa) clamped inductive load @ 0.8 v ces t sc v ge = 15 v, v ce = 360 v, t j = 125 c 10 s (scsoa) r g = 82 , non repetitive p c t c = 25 c 190 w t j -55 ... +150 c t jm 150 c t stg -55 ... +150 c weight 2 g maximum lead temperature for soldering 300 c 1.6 mm (0.062 in.) from case for 10 s maximum tab temperature for soldering for 10s 260 c symbol test conditions characteristic values (t j = 25 c, unless otherwise specified) min. typ. max. bv ces i c = 250 a, v ge = 0 v 600 v v ge(th) i c = 750 a, v ce = v ge 3.5 6.5 v i ces v ce = v ces 85 a v ge = 0 v t j = 125 c 0.6 ma i ges v ce = 0 v, v ge = 20 v 100 na v ce(sat) i c = 16a, v ge = 15 v 2.5 v preliminary data sheet v ces = 600 v i c25 = 35 a v ce(sat) = 2.5 v g = gate c = collector e = emitter tab = collector g c e to-220 (ixsp) c (tab) ? 2004 ixys all rights reserved c (tab) g c to-220 (ixsa)
ixsa 20n60b2d1 ixsp 20n60b2d1 reverse diode (fred) characteristic values (t j = 25 c, unless otherwise specified) symbol test conditions min. typ. max. v f i f = 10a, v ge = 0 v t j =150 c 1.66 v 2.66 v i rm i f = 12a, v ge = 0 v, -di f /dt = 100 a/ s t j = 100 c 1.5 a t rr v r = 100 v t j = 100 c90 ns t rr i f = 1 a; -di/dt = 100 a/ s; v r = 30 v 30 ns r thjc 2.5 k/w symbol test conditions characteristic values (t j = 25 c, unless otherwise specified) min. typ. max. g fs i c = 16a; v ce = 10 v, note 1 3.5 7.0 s c ies 800 pf c oes v ce = 25 v, v ge = 0 v 76 pf f = 1 mhz 20n60b2d1 90 pf c res 28 pf q g 33 nc q ge i c = 16a, v ge = 15 v, v ce = 0.5 v ces 12 nc q gc 12 nc t d(on) 30 ns t ri 30 ns t d(off) 116 ns t fi 126 ns e off 380 600 j t d(on) 30 ns t ri 30 ns e on 20n60b2 0.12 mj 20n60b2d1 0.42 mj t d(off) 180 ns t fi 210 ns e off 970 j r thjc 0.66 k/w r thcs 0.3 k/w inductive load, t j = 25 c i c = 16a, v ge = 15 v v ce = 0.8 v ces , r g = 10 switching times may increase for v ce (clamp) > 0.8 ? v ces , higher t j or increased r g inductive load, t j = 125 c i c = 16 a, v ge = 15 v v ce = 0.8 v ces , r g = 10 switching times may increase for v ce (clamp) > 0.8 ? v ces , higher t j or increased r g to-220 ab (ixsp) outline dim. millimeter inches min. max. min. max. a 12.70 13.97 0.500 0.550 b 14.73 16.00 0.580 0.630 c 9.91 10.66 0.390 0.420 d 3.54 4.08 0.139 0.161 e 5.85 6.85 0.230 0.270 f 2.54 3.18 0.100 0.125 g 1.15 1.65 0.045 0.065 h 2.79 5.84 0.110 0.230 j 0.64 1.01 0.025 0.040 k 2.54 bsc 0.100 bsc m 4.32 4.82 0.170 0.190 n 1.14 1.39 0.045 0.055 q 0.35 0.56 0.014 0.022 r 2.29 2.79 0.090 0.110 note 1: pulse test, t 300 s, duty cycle d 2 % ixys mosfets and igbts are covered by 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 b1 6,683,344 6,727,585 one or moreof the following u.s. patents: 4,850,072 5,017,508 5,063,307 5,381,025 6,259,123 b1 6,534,343 6,710,405b2 6,759,692 4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 b1 6,583,505 6,710,463 6771478 b2 dim. millimeter inches min. max. min. max. a 4.06 4.83 .160 .190 a1 2.03 2.79 .080 .110 b 0.51 0.99 .020 .039 b2 1.14 1.40 .045 .055 c 0.46 0.74 .018 .029 c2 1.14 1.40 .045 .055 d 8.64 9.65 .340 .380 d1 7.11 8.13 .280 .320 e 9.65 10.29 .380 .405 e1 6.86 8.13 .270 .320 e 2.54 bsc .100 bsc l 14.61 15.88 .575 .625 l1 2.29 2.79 .090 .110 l2 1.02 1.40 .040 .055 l3 1.27 1.78 .050 .070 l4 0 0.38 0 .015 r 0.46 0.74 .018 .029 to-263 (ixsa) outline
ixsa 20n60b2d1 ixsp 20n60b2d1 fig. 2. extended output characteristics @ 25 o c 0 10 20 30 40 50 60 70 0 2 4 6 8 101214161820 v c e - volts i c - amperes v ge = 17v 9v 11v 13v 15v fig. 3. output characteristics @ 125 o c 0 4 8 12 16 20 24 28 32 0.5 1 1.5 2 2.5 3 3.5 4 4.5 v ce - volts i c - amperes v ge = 17v 15v 7v 13v 9v 11v fig. 1. output characteristics @ 25 o c 0 4 8 12 16 20 24 28 32 0.5 1 1.5 2 2.5 3 3.5 4 v c e - volts i c - amperes v ge = 17v 15v 13v 7v 9v 11v fig. 4. dependence of v ce(sat) on temperature 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 -50 -25 0 25 50 75 100 125 150 t j - degrees centigrade v c e (sat) - normalize d i c = 16a i c = 8a v ge = 15v i c = 32a fig. 5. collector-to-em itter voltage vs. gate-to-em itter voltage 1 2 3 4 5 6 7 8 9 1011 12 1314 1516 17 1819 20 v g e - volts v c e - volts t j = 25 o c i c = 32a 16a 8a fig. 6. input adm ittance 0 10 20 30 40 50 60 6 7 8 9 10 11 12 13 14 15 16 v g e - volts i c - amperes t j = 125 o c 25 o c -40 o c
ixsa 20n60b2d1 ixsp 20n60b2d1 fig. 7. transconductance 0 1 2 3 4 5 6 7 8 9 0 102030405060 i c - amperes g f s - siemens t j = -40 o c 25 o c 125 o c fig. 8. dependence of turn-off energy loss on r g 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 10 20 30 40 50 60 70 80 90 100 r g - ohms e o f f - miiiljoules i c = 8a t j = 125 o c v ge = 15v v ce = 400v i c = 16a i c = 32a fig. 9. dependence of turn-off energy loss on i c 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 8 1216 20242832 i c - amperes e o f f - miiiljoules r g = 10 ? v ge = 15v v ce = 400v t j = 125 o c t j = 25 o c fig. 10. dependence of turn-off energy loss on temperature 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 25 35 45 55 65 75 85 95 105 115 125 t j - degrees centigrade e o f f - millijoules i c = 32a r g = 10 ? v ge = 15v v ce = 400v i c = 16a i c = 8a fig. 11. dependence of turn-off sw itching time on r g 100 150 200 250 300 350 400 450 10 20 30 40 50 60 70 80 90 100 r g - ohms s w it c hi ng ti me - nanosecon d s i c = 8a t d(off) t fi - - - - - t j = 125 o c v ge = 15v v ce = 400v i c = 16a i c = 32a fig. 12. dependence of turn-off sw itching tim e on i c 60 80 100 120 140 160 180 200 220 240 260 8 121620242832 i c - amperes switching time - nanoseconds t d(off) t fi - - - - - r g = 10 ? v ge = 15v v ce = 400v t j = 125 o c t j = 25 o c
ixsa 20n60b2d1 ixsp 20n60b2d1 fig. 14. gate charge 0 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30 35 q g - nanocoulombs v g e - volts v ce = 480v i c = 16a i g = 10ma fig. 15. capacitance 10 100 1,000 0 5 10 15 20 25 30 35 40 v c e - volts capacitance - p f c ies c oes c res f = 1 mhz fig. 13. dependence of turn-off sw itching time on temperature 80 100 120 140 160 180 200 220 240 260 280 300 25 35 45 55 65 75 85 95 105 115 125 t j - degrees centigrade switching time - nanoseconds i c = 32a t d( off) t fi - - - - - r g = 10 ? v ge = 15v v ce = 400v i c = 16a i c = 8a i c = 32a fig. 16. reverse-bias safe operating area 0 3 6 9 12 15 18 21 24 27 30 33 100 200 300 400 500 600 v c e - volts i c - amperes t j = 125 o c r g = 10 ? dv/dt < 10v/ns fig. 17. maximum transient thermal resistance 0.10 1.00 1 10 100 1,000 pulse width - milliseconds r ( t h ) j c - oc / w 0.50
ixsa 20n60b2d1 ixsp 20n60b2d1 ixys mosfets and igbts are covered by 4,835,592 4,881,106 5,017,508 5,049,961 5,187,117 5,381,025 6,162,665 6,306,728 b1 6,534,343 6,683,344 one or moreof the following u.s. patents: 4,850,072 4,931,844 5,034,796 5,063,307 5,237,481 5,486,715 6,259,123 b1 6,404,065 b1 6,583,505 6,710,405b2 ixys reserves the right to change limits, test conditions, and dimensions. fig. 20. peak reverse current i rm fig. 19. reverse recovery charge q r fig. 18. forward current i f versus v f fig. 21. dynamic parameters q r , i rm fig. 22. recovery time t rr versus -di f /dt fig. 23. peak forward voltage v fr and fig. 24. transient thermal resistance junction-to-case constants for z thjc calculation: ir thi (k/w) t i (s) 1 1.449 0.0052 2 0.5578 0.0003 note: fig. 18 to fig. 23 shows typical values 200 600 1000 0 400 800 40 60 80 100 0.00001 0.0001 0.001 0.01 0.1 1 0.001 0.01 0.1 1 10 0 40 80 120 160 0.0 0.5 1.0 1.5 2.0 k f t vj c -di f /dt t s k/w 0 200 400 600 800 1000 0 20 40 60 0.0 0.1 0.2 0.3 v fr di f /dt v 200 600 1000 0400800 0 2 4 6 8 10 100 1000 0 50 100 150 200 250 0123 0 5 10 15 20 25 30 i rm q r i f a v f -di f /dt -di f /dt a/ s a v nc a/ s a/ s t rr ns t fr z thjc a/ s s t vj = 150c t vj = 100c t vj = 25c i rm q r v fr t vj = 100c v r = 300 v t vj = 100c v r = 300 v t vj = 100c v r = 300 v dsep 8-06b t fr i f = 5 a i f = 10 a i f = 20 a i f = 5 a i f = 10 a i f = 20 a i f = 5 a i f = 10 a i f = 20 a t vj = 100c i f = 10 a


▲Up To Search▲   

 
Price & Availability of IXSP20N60B2D1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X